目前,大数据正处于融合发展和变革创新的重要关口:工业数据量激增,互联网、移动互联网、物联网三大生态顺次发展,使得全球数据总量爆发性增长。到 2020 年,数据总量将达到 44ZB(万亿 GB),其中工业数据增速将是其它大数据领域的两倍;软件、网络、装备等各领域间技术频繁发生跨界耦合交融,依托数据的整合作用,推动产品与服务、硬件与软件、应用与平台趋向交融;全球产业格局面临重塑,传统大数据 IT 企业、自动化企业、制造企业正在成为工业大数据这一新兴领域的领导力量,以融合性技术创新和新兴产业生态体系为标志的产业新格局正在形成中。
工业大数据正是以行业模型为前提,将面向不同行业、不同场景、不同学科中的工业机理、专家经验、行业知识和最佳实践固化成为数据统计、挖掘和分析模型,将业务问题转化为数据可解的问题;以数据科学为基础,使得深度学习、迁移学习、强化学习等为代表的人工智能算法成为解决工业大数据领域诊断、预测与优化问题的得力工具;以软件服务为目的,形成可落地执行的工业大数据解决方案。
从“人工智能”到“工业智能”
从计算机、互联网行业出身的智能化技术,正在以势不可当的势头横扫全球各个领域。智能化与工业的结合更是引得全球瞩目。从德国的工业4.0到美国的工业互联网,从GE的Predix到IBM的PMQ,可以看出,工业与智能化技术的结合也必将是下一个风口。
智能的核心在于决策和执行,而决策的核心在于感知和判断。在工业系统中,IoT技术,以及传感器技术、数据传输、数据管理等不断发展,为智能化技术实施提供了可靠的感知基础。但是目前的工业界大都以人的决策和反馈为核心,这就导致系统中有很大一部分的价值并没有被释放出来。系统越是复杂,人的学习曲线就会越缓慢,而当人的学习曲线比技术的进步速度慢时,人就会成为制约技术进步和应用的瓶颈。而人工智能为工业带来的第一个革命性的改变,就是摆脱人类认知和知识边界的限制,为决策支持和协同优化提供可量化依据。
智能制造发展进入高速成长期,主要体现在:
中国工业企业数字化能力素质提升,为未来制造系统的分析预测和自适应奠定基础。
财务效益方面,智能制造对企业的利润贡献率明显提升。
典型应用方面,中国已成为工业机器人第一大消费国,需求增长强劲。
中国企业智能制造五大部署重点,依次为:数字化工厂(63%)、设备及用户价值深挖(62%)、工业物联网(48%)、重构商业模式(36%)、人工智能(21%)。
数字化工厂是首要任务。智能制造是以制造环节的智能化为核心,以端到端数据流为基础,以数字作为核心驱动力,因此数字化工厂被企业列为智能制造部署的首要任务。目前企业数字化工厂部署以打通生产到执行的数据流为主要任务,而产品数据流和供应链数据流提升空间巨大。
设备和用户价值深度挖掘。制造业面临愈发激烈的市场竞争和日益透明的产品定价,不得不寻找新的价值来源。设备和用户价值深度挖掘是企业智能制造部署第二重点领域。62%的受访企业正积极部署设备和用户价值深度挖掘。
中国制造企业云部署积极性不高。53%受访企业尚未部署工业云,47%的企业正在进行工业云部署,其中27%的企业部署私有云,14%部署公有云,6%部署混合云。
重构未来商业模式。智能制造不仅能够帮助制造型企业实现降本增效,也赋予企业重新思考价值定位和重构商业模式的契机。30%的受访企业未来商业模式以平台为核心,26%的企业走规模化定制,24%以“产品+服务”为核心向解决方案商转型,12%以知识产权为核心。
人工智能对制造业的影响,主要来自两方面:一是在制造和管理流程中运用人工智能提高质量和效率;二是对现有产品与服务的彻底颠覆。
三大任务,跨越能力鸿沟。重构商业模式是一项复杂艰巨的任务,要达成这项任务,企业需先加强商业模式优化、创新管理以及云部署三大关键能力。